Brain Fatty Acid Binding Protein (Fabp7) Is Diurnally Regulated in Astrocytes and Hippocampal Granule Cell Precursors in Adult Rodent Brain

نویسندگان

  • Jason R. Gerstner
  • Quentin Z. Bremer
  • William M. Vander Heyden
  • Timothy M. LaVaute
  • Jerry C. Yin
  • Charles F. Landry
چکیده

Brain fatty acid binding protein (Fabp7), which is important in early nervous system development, is expressed in astrocytes and neuronal cell precursors in mature brain. We report here that levels of Fabp7 mRNA in adult murine brain change over a 24 hour period. Unlike Fabp5, a fatty acid binding protein that is expressed widely in various cell types within brain, RNA analysis revealed that Fabp7 mRNA levels were elevated during the light period and lower during dark in brain regions involved in sleep and activity mechanisms. This pattern of Fabp7 mRNA expression was confirmed using in situ hybridization and found to occur throughout the entire brain. Changes in the intracellular distribution of Fabp7 mRNA were also evident over a 24 hour period. Diurnal changes in Fabp7, however, were not found in postnatal day 6 brain, when astrocytes are not yet mature. In contrast, granule cell precursors of the subgranular zone of adult hippocampus did undergo diurnal changes in Fabp7 expression. These changes paralleled oscillations in Fabp7 mRNA throughout the brain suggesting that cell-coordinated signals likely control brain-wide Fabp7 mRNA expression. Immunoblots revealed that Fabp7 protein levels also underwent diurnal changes in abundance, with peak levels occurring in the dark period. Of clock or clock-regulated genes, the synchronized, global cycling pattern of Fabp7 expression is unique and implicates glial cells in the response or modulation of activity and/or circadian rhythms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of brain fatty acid-binding protein with the polyunsaturated fatty acid environment as a potential determinant of poor prognosis in malignant glioma.

Malignant gliomas are the most common adult brain cancers. In spite of aggressive treatment, recurrence occurs in the great majority of patients and is invariably fatal. Polyunsaturated fatty acids are abundant in brain, particularly ω-6 arachidonic acid (AA) and ω-3 docosahexaenoic acid (DHA). Although the levels of ω-6 and ω-3 polyunsaturated fatty acids are tightly regulated in brain, the ω-...

متن کامل

Time of day regulates subcellular trafficking, tripartite synaptic localization, and polyadenylation of the astrocytic Fabp7 mRNA.

The astrocyte brain fatty acid binding protein (Fabp7) has previously been shown to have a coordinated diurnal regulation of mRNA and protein throughout mouse brain, and an age-dependent decline in protein expression within synaptoneurosomal fractions. Mechanisms that control time-of-day changes in expression and trafficking Fabp7 to the perisynaptic process are not known. In this study, we con...

متن کامل

Normal sleep requires the astrocyte brain-type fatty acid binding protein FABP7

Sleep is found widely in the animal kingdom. Despite this, few conserved molecular pathways that govern sleep across phyla have been described. The mammalian brain-type fatty acid binding protein (Fabp7) is expressed in astrocytes, and its mRNA oscillates in tandem with the sleep-wake cycle. However, the role of FABP7 in regulating sleep remains poorly understood. We found that the missense mut...

متن کامل

The Nuclear Receptor REV-ERBα Regulates Fabp7 and Modulates Adult Hippocampal Neurogenesis

The function of the nuclear receptor Rev-erbα (Nr1d1) in the brain is, apart from its role in the circadian clock mechanism, unknown. Therefore, we compared gene expression profiles in the brain between wild-type and Rev-erbα knock-out (KO) animals. We identified fatty acid binding protein 7 (Fabp7, Blbp) as a direct target of repression by REV-ERBα. Loss of Rev-erbα manifested in memory and mo...

متن کامل

P 89: Reduction of Neuroinflammation in Epilepsy by Using Stem Cells Derived Astrocytes

Epilepsy is neurological disorders that afflict many people around the world with a higher prevalence rate in children and in low income countries. Temporal lobe epilepsy (TLE) is result from hippocampal sclerosis is a neurological disorder with difficult treatment. Stem cells can transform into any type of cells such as glial cells, consequently stem cells can use for medical treatment. Stem c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008